Yinpeng Dong
Yinpeng Dong
Zweryfikowany adres z mails.tsinghua.edu.cn - Strona główna
Tytuł
Cytowane przez
Cytowane przez
Rok
Boosting adversarial attacks with momentum
Y Dong, F Liao, T Pang, H Su, J Zhu, X Hu, J Li
Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2018
9962018
Defense against adversarial attacks using high-level representation guided denoiser
F Liao, M Liang, Y Dong, T Pang, X Hu, J Zhu
Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2018
4212018
Evading defenses to transferable adversarial examples by translation-invariant attacks
Y Dong, T Pang, H Su, J Zhu
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2019
1882019
Technical report on the cleverhans v2. 1.0 adversarial examples library
N Papernot, F Faghri, N Carlini, I Goodfellow, R Feinman, A Kurakin, ...
arXiv preprint arXiv:1610.00768, 2016
1742016
Adversarial attacks and defences competition
A Kurakin, I Goodfellow, S Bengio, Y Dong, F Liao, M Liang, T Pang, ...
The NIPS'17 Competition: Building Intelligent Systems, 195-231, 2018
1722018
Efficient decision-based black-box adversarial attacks on face recognition
Y Dong, H Su, B Wu, Z Li, W Liu, T Zhang, J Zhu
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2019
1432019
Towards robust detection of adversarial examples
T Pang, C Du, Y Dong, J Zhu
NeurIPS 2018, 2017
123*2017
Improving black-box adversarial attacks with a transfer-based prior
S Cheng, Y Dong, T Pang, H Su, J Zhu
NeurIPS 2019, 2019
862019
Improving interpretability of deep neural networks with semantic information
Y Dong, H Su, J Zhu, B Zhang
Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2017
842017
Towards interpretable deep neural networks by leveraging adversarial examples
Y Dong, H Su, J Zhu, F Bao
AAAI 2019 Workshop on Network Interpretability for Deep Learning, 2017
822017
Benchmarking adversarial robustness on image classification
Y Dong, QA Fu, X Yang, T Pang, H Su, Z Xiao, J Zhu
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2020
712020
Rethinking softmax cross-entropy loss for adversarial robustness
T Pang, K Xu, Y Dong, C Du, N Chen, J Zhu
ICLR 2021, 2019
542019
Forecast the Plausible Paths in Crowd Scenes.
H Su, J Zhu, Y Dong, B Zhang
IJCAI 1, 2, 2017
482017
Learning visual knowledge memory networks for visual question answering
Z Su, C Zhu, Y Dong, D Cai, Y Chen, J Li
Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2018
452018
Crowd Scene Understanding with Coherent Recurrent Neural Networks.
H Su, Y Dong, J Zhu, H Ling, B Zhang
IJCAI 1, 2, 2016
432016
Learning accurate low-bit deep neural networks with stochastic quantization
Y Dong, R Ni, J Li, Y Chen, J Zhu, H Su
British Machine Vision Conference, 2017
362017
Batch virtual adversarial training for graph convolutional networks
Z Deng, Y Dong, J Zhu
ICML 2019 Workshop on Learning and Reasoning with Graph-Structured …, 2019
352019
Bag of tricks for adversarial training
T Pang, X Yang, Y Dong, H Su, J Zhu
ICLR 2021, 2020
342020
Boosting adversarial training with hypersphere embedding
T Pang, X Yang, Y Dong, K Xu, J Zhu, H Su
NeurIPS 2020, 2020
312020
Adversarial vision challenge
W Brendel, J Rauber, A Kurakin, N Papernot, B Veliqi, SP Mohanty, ...
The NeurIPS'18 Competition, 129-153, 2020
142020
Nie można teraz wykonać tej operacji. Spróbuj ponownie później.
Prace 1–20