Obserwuj
Ziwei Zhu
Tytuł
Cytowane przez
Cytowane przez
Rok
Fairness-aware tensor-based recommendation
Z Zhu, X Hu, J Caverlee
Proceedings of the 27th ACM international conference on information and …, 2018
1892018
Popularity-opportunity bias in collaborative filtering
Z Zhu, Y He, X Zhao, Y Zhang, J Wang, J Caverlee
Proceedings of the 14th ACM International Conference on Web Search and Data …, 2021
1472021
Infusing disease knowledge into BERT for health question answering, medical inference and disease name recognition
Y He, Z Zhu, Y Zhang, Q Chen, J Caverlee
arXiv preprint arXiv:2010.03746, 2020
1212020
Measuring and mitigating item under-recommendation bias in personalized ranking systems
Z Zhu, J Wang, J Caverlee
Proceedings of the 43rd international ACM SIGIR conference on research and …, 2020
1162020
Session-based recommendation with hypergraph attention networks
J Wang, K Ding, Z Zhu, J Caverlee
Proceedings of the 2021 SIAM international conference on data mining (SDM …, 2021
1032021
Recommendation for new users and new items via randomized training and mixture-of-experts transformation
Z Zhu, S Sefati, P Saadatpanah, J Caverlee
Proceedings of the 43rd International ACM SIGIR Conference on Research and …, 2020
862020
Popularity bias in dynamic recommendation
Z Zhu, Y He, X Zhao, J Caverlee
Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data …, 2021
832021
Fairness among new items in cold start recommender systems
Z Zhu, J Kim, T Nguyen, A Fenton, J Caverlee
Proceedings of the 44th international ACM SIGIR conference on research and …, 2021
712021
Improving top-k recommendation via jointcollaborative autoencoders
Z Zhu, J Wang, J Caverlee
The World Wide Web Conference, 3483-3482, 2019
632019
Unbiased implicit recommendation and propensity estimation via combinational joint learning
Z Zhu, Y He, Y Zhang, J Caverlee
Proceedings of the 14th ACM Conference on Recommender Systems, 551-556, 2020
502020
Content-collaborative disentanglement representation learning for enhanced recommendation
Y Zhang, Z Zhu, Y He, J Caverlee
Proceedings of the 14th ACM Conference on Recommender Systems, 43-52, 2020
422020
Quantifying and mitigating popularity bias in conversational recommender systems
A Lin, J Wang, Z Zhu, J Caverlee
Proceedings of the 31st ACM international conference on information …, 2022
392022
Modeling and detecting student attention and interest level using wearable computers
Z Zhu, S Ober, R Jafari
2017 IEEE 14th international conference on wearable and implantable body …, 2017
352017
Key opinion leaders in recommendation systems: Opinion elicitation and diffusion
J Wang, K Ding, Z Zhu, Y Zhang, J Caverlee
Proceedings of the 13th international conference on web search and data …, 2020
332020
Improving the estimation of tail ratings in recommender system with multi-latent representations
X Zhao, Z Zhu, Y Zhang, J Caverlee
Proceedings of the 13th International Conference on Web Search and Data …, 2020
222020
End-to-end learning for fair ranking systems
J Kotary, F Fioretto, P Van Hentenryck, Z Zhu
Proceedings of the ACM Web Conference 2022, 3520-3530, 2022
212022
Rabbit holes and taste distortion: Distribution-aware recommendation with evolving interests
X Zhao, Z Zhu, J Caverlee
Proceedings of the Web Conference 2021, 888-899, 2021
202021
Fighting mainstream bias in recommender systems via local fine tuning
Z Zhu, J Caverlee
Proceedings of the Fifteenth ACM International Conference on Web Search and …, 2022
182022
Breaking the trilemma of privacy, utility, and efficiency via controllable machine unlearning
Z Liu, G Dou, E Chien, C Zhang, Y Tian, Z Zhu
Proceedings of the ACM on Web Conference 2024, 1260-1271, 2024
162024
Global Voices, local biases: Socio-cultural prejudices across languages
A Mukherjee, C Raj, Z Zhu, A Anastasopoulos
arXiv preprint arXiv:2310.17586, 2023
122023
Nie można teraz wykonać tej operacji. Spróbuj ponownie później.
Prace 1–20