Andrew Jaegle
Andrew Jaegle
Research Scientist, DeepMind
Verified email at - Homepage
Cited by
Cited by
Perceiver: General perception with iterative attention
A Jaegle, F Gimeno, A Brock, A Zisserman, O Vinyals, J Carreira
International Conference on Machine Learning (ICML), 2021
Perceiver IO: A general architecture for structured inputs & outputs
A Jaegle, S Borgeaud, JB Alayrac, C Doersch, C Ionescu, D Ding, ...
arXiv preprint arXiv:2107.14795, 2021
Hamiltonian generative networks
P Toth, DJ Rezende, A Jaegle, S Racanière, A Botev, I Higgins
International Conference on Learning Representations (ICLR), 2020
Emergence of invariant representation of vocalizations in the auditory cortex
IM Carruthers, DA Laplagne, A Jaegle, JJ Briguglio, ...
Journal of neurophysiology 114 (5), 2726-2740, 2015
Direct control of visual perception with phase-specific modulation of posterior parietal cortex
A Jaegle, T Ro
Journal of cognitive neuroscience 26 (2), 422-432, 2014
Visual novelty, curiosity, and intrinsic reward in machine learning and the brain
A Jaegle, V Mehrpour, N Rust
Current opinion in neurobiology 58, 167-174, 2019
Population response magnitude variation in inferotemporal cortex predicts image memorability
A Jaegle, V Mehrpour, Y Mohsenzadeh, T Meyer, A Oliva, N Rust
Elife 8, e47596, 2019
Game Plan: What AI can do for Football, and What Football can do for AI
K Tuyls, S Omidshafiei, P Muller, Z Wang, J Connor, D Hennes, I Graham, ...
Journal of Artificial Intelligence Research 71, 41-88, 2021
Fast, robust, continuous monocular egomotion computation
A Jaegle, S Phillips, K Daniilidis
2016 IEEE International Conference on Robotics and Automation (ICRA), 773-780, 2016
Towards learning universal audio representations
L Wang, P Luc, Y Wu, A Recasens, L Smaira, A Brock, A Jaegle, ...
ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and …, 2022
Learning what you can do before doing anything
O Rybkin, K Pertsch, KG Derpanis, K Daniilidis, A Jaegle
International Conference on Learning Representations (ICLR), 2019
Keyframing the Future: Keyframe Discovery for Visual Prediction and Planning
K Pertsch, O Rybkin, J Yang, KG Derpanis, K Daniilidis, J Lim, A Jaegle
Learning for Dynamics & Control (L4DC), 2020
Object discovery and representation networks
OJ Hénaff, S Koppula, E Shelhamer, D Zoran, A Jaegle, A Zisserman, ...
Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel …, 2022
Which priors matter? Benchmarking models for learning latent dynamics
A Botev, A Jaegle, P Wirnsberger, D Hennes, I Higgins
Neural Information Processing Systems (NeurIPS), 2021
General-purpose, long-context autoregressive modeling with perceiver ar
C Hawthorne, A Jaegle, C Cangea, S Borgeaud, C Nash, M Malinowski, ...
International Conference on Machine Learning, 8535-8558, 2022
Physically embedded planning problems: New challenges for reinforcement learning
M Mirza, A Jaegle, JJ Hunt, A Guez, S Tunyasuvunakool, A Muldal, ...
arXiv preprint arXiv:2009.05524, 2020
Transframer: Arbitrary frame prediction with generative models
C Nash, J Carreira, J Walker, I Barr, A Jaegle, M Malinowski, P Battaglia
arXiv preprint arXiv:2203.09494, 2022
Hierarchical perceiver
J Carreira, S Koppula, D Zoran, A Recasens, C Ionescu, O Henaff, ...
arXiv preprint arXiv:2202.10890, 2022
Beyond Tabula-Rasa: a Modular Reinforcement Learning Approach for Physically Embedded 3D Sokoban
P Karkus, M Mirza, A Guez, A Jaegle, T Lillicrap, L Buesing, N Heess, ...
ICLR Workshop "Beyond 'tabula rasa' in reinforcement learning", 2020
Understanding image motion with group representations
A Jaegle, S Phillips, D Ippolito, K Daniilidis
International Conference on Learning Representations (ICLR), 2018
The system can't perform the operation now. Try again later.
Articles 1–20