Jacob Gardner
Tytuł
Cytowane przez
Cytowane przez
Rok
Gpytorch: Blackbox matrix-matrix gaussian process inference with gpu acceleration
JR Gardner, G Pleiss, D Bindel, KQ Weinberger, AG Wilson
Advances in Neural Information Processing Systems, 2018
2792018
Bayesian Optimization with Inequality Constraints.
JR Gardner, MJ Kusner, ZE Xu, KQ Weinberger, JP Cunningham
ICML 2014, 937-945, 2014
2752014
Deep feature interpolation for image content changes
P Upchurch*, J Gardner*, G Pleiss, R Pless, N Snavely, K Bala, ...
Proceedings of the IEEE conference on computer vision and pattern …, 2017
1962017
Simple black-box adversarial attacks
C Guo, JR Gardner, Y You, AG Wilson, KQ Weinberger
International Conference on Machine Learning, 2019
1542019
Exact Gaussian processes on a million data points
KA Wang, G Pleiss, JR Gardner, S Tyree, KQ Weinberger, AG Wilson
Advances in Neural Information Processing Systems, 2019
1062019
Scalable global optimization via local bayesian optimization
D Eriksson, M Pearce, JR Gardner, R Turner, M Poloczek
Advances in Neural Information Processing Systems, 2019
742019
Deep manifold traversal: Changing labels with convolutional features
JR Gardner, P Upchurch, MJ Kusner, Y Li, KQ Weinberger, K Bala, ...
arXiv preprint arXiv:1511.06421, 2015
692015
Constant-time predictive distributions for Gaussian processes
G Pleiss, JR Gardner, KQ Weinberger, AG Wilson
International Conference on Machine Learning, 2018
492018
Discovering and exploiting additive structure for Bayesian optimization
J Gardner, C Guo, K Weinberger, R Garnett, R Grosse
Artificial Intelligence and Statistics, 1311-1319, 2017
492017
Product kernel interpolation for scalable Gaussian processes
JR Gardner, G Pleiss, R Wu, KQ Weinberger, AG Wilson
Artificial Intelligence and Statistics, 2018
462018
Differentially private Bayesian optimization
M Kusner, J Gardner, R Garnett, K Weinberger
International conference on machine learning, 918-927, 2015
422015
A reduction of the elastic net to support vector machines with an application to GPU computing
Q Zhou, W Chen, S Song, J Gardner, K Weinberger, Y Chen
Proceedings of the AAAI Conference on Artificial Intelligence 29 (1), 2015
422015
Fast, continuous audiogram estimation using machine learning
XD Song, BM Wallace, JR Gardner, NM Ledbetter, KQ Weinberger, ...
Ear and hearing 36 (6), e326, 2015
392015
Bayesian active model selection with an application to automated audiometry
JR Gardner, G Malkomes, R Garnett, KQ Weinberger, D Barbour, ...
Proceedings of the 28th International Conference on Neural Information …, 2015
302015
Psychophysical Detection Testing with Bayesian Active Learning.
JR Gardner, X Song, KQ Weinberger, DL Barbour, JP Cunningham
UAI, 286-295, 2015
272015
Parallel support vector machines in practice
S Tyree, JR Gardner, KQ Weinberger, K Agrawal, J Tran
arXiv preprint arXiv:1404.1066, 2014
272014
Parametric Gaussian Process Regressors
M Jankowiak, G Pleiss, JR Gardner
International Conference on Machine Learning, 2020
22*2020
Fast matrix square roots with applications to Gaussian processes and Bayesian optimization
G Pleiss, M Jankowiak, D Eriksson, A Damle, JR Gardner
Advances in Neural Information Processing Systems, 2020
122020
Deep Sigma Point Processes
M Jankowiak, G Pleiss, JR Gardner
Uncertainty in Artificial Intelligence, 2020
72020
Efficient Nonmyopic Bayesian Optimization via One-Shot Multi-Step Trees
S Jiang, DR Jiang, M Balandat, B Karrer, JR Gardner, R Garnett
Advances in Neural Information Processing Systems, 2020
62020
Nie można teraz wykonać tej operacji. Spróbuj ponownie później.
Prace 1–20