Obserwuj
Maria Refinetti
Tytuł
Cytowane przez
Cytowane przez
Rok
Double trouble in double descent: Bias and variance (s) in the lazy regime
S d’Ascoli, M Refinetti, G Biroli, F Krzakala
International Conference on Machine Learning, 2280-2290, 2020
992020
Classifying high-dimensional gaussian mixtures: Where kernel methods fail and neural networks succeed
M Refinetti, S Goldt, F Krzakala, L Zdeborová
International Conference on Machine Learning, 8936-8947, 2021
302021
Align, then memorise: the dynamics of learning with feedback alignment
M Refinetti, S d’Ascoli, R Ohana, S Goldt
International Conference on Machine Learning, 8925-8935, 2021
26*2021
Epidemic mitigation by statistical inference from contact tracing data
A Baker, I Biazzo, A Braunstein, G Catania, L Dall’Asta, A Ingrosso, ...
Proceedings of the National Academy of Sciences 118 (32), e2106548118, 2021
152021
Bootstrapping traceless symmetric O (N) scalars
M Reehorst, M Refinetti, A Vichi
arXiv preprint arXiv:2012.08533, 18, 2020
112020
Fluctuations, bias, variance & ensemble of learners: Exact asymptotics for convex losses in high-dimension
B Loureiro, C Gerbelot, M Refinetti, G Sicuro, F Krzakala
International Conference on Machine Learning, 14283-14314, 2022
32022
Neural networks trained with SGD learn distributions of increasing complexity
M Refinetti, A Ingrosso, S Goldt
arXiv preprint arXiv:2211.11567, 2022
12022
The dynamics of representation learning in shallow, non-linear autoencoders
M Refinetti, S Goldt
International Conference on Machine Learning, 18499-18519, 2022
12022
Optimal learning rate schedules in high-dimensional non-convex optimization problems
S d'Ascoli, M Refinetti, G Biroli
arXiv preprint arXiv:2202.04509, 2022
12022
The Role of Architecture, Data Structure and Algorithm in Machine Learning: a Statistical Physics Approach
M Refinetti
Sorbonne Université, 2022
2022
Nie można teraz wykonać tej operacji. Spróbuj ponownie później.
Prace 1–10